APPROXIMATION BY EXPONENTIALS. III.*
 THE USE OF THE PRODUCT OF A POLYNOMIAL AND AN EXPONENTIAL FUNCTION

E.SLAVÍČEK
Department of Computer Technique, Institute of Chemical Technology, 16628 Prague 6

Received October 25th, 1972

The author deals with the problem of fitting to experimental data an equation $u=\left(p_{0}+p_{1} x+\right.$ $\left.+\ldots+p_{\mathrm{n}} x^{\mathrm{n}}\right) \exp (\omega x)$, where $\omega, p_{0}, p_{1}, \ldots, p_{\mathrm{n}}$ are constants, and further a generalized equation $u=q_{0} D_{0}(x)+q_{1} D_{1}(x)+\ldots+q_{\mathrm{n}} D_{\mathrm{n}}(x)$ where $D_{\mathrm{i}}=\mathrm{P}_{\mathrm{i}}(x)$. $\exp (\omega x)$ and $P_{\mathrm{i}}(x)$ is a polynomial of the i-th degree. All D_{i} are orthogonal functions on the set of numbers x. Special cases are discussed in which these equations are subject to the constraint $u=u_{0}$ for $x=x_{0}$.

The character of the above equations makes them well suited for fitting the frequency curves (putting $p_{0}=0$ makes $u=0$ both for $x=0$ and $x=\infty ; \omega$ assumed negative) as well as those curves where $u=L=$ const. for $x \rightarrow \infty$ (e.g. in chemical reaction studies).

General Formulation

Let us have $R>n+1$ pairs of experimental observations $x_{i}, y_{i} i=0,1, \ldots R-1$ obtained e.g. on a computer or otherwise.

We search for the unknowns $p_{0}, p_{1}, \ldots, p_{\mathrm{n}}, \omega$ of equation

$$
\begin{equation*}
u=\left(p_{0}+p_{1} x+\ldots+p_{\mathrm{n}} x^{\mathrm{n}}\right) \exp (\omega x) \tag{I}
\end{equation*}
$$

such that the sum of the squares of the deviations (SSD)

$$
\begin{equation*}
\mathrm{SSD}=\sum_{i=0}^{R-1}\left(u-y_{\mathrm{i}}\right)^{2} \tag{2}
\end{equation*}
$$

be a minimum. The problem leads to $n+2$ equations

$$
\begin{gather*}
\frac{\partial \mathrm{SSD}}{\partial p_{0}}=\frac{\partial \mathrm{SSD}}{\partial p_{1}}=\ldots=\frac{\partial \mathrm{SSD}}{\partial p_{\mathrm{n}}}=0 \tag{3}\\
\frac{\partial \mathrm{SSD}}{\partial \omega}=0 \tag{4}
\end{gather*}
$$

[^0]While Eqs (3) are linear in $p_{1}, p_{2}, \ldots p_{\mathrm{n}}$, Eq. (4) is a non-linear one. A plausible approach is to pick ω at random, solve the set of Eqs (3) for $p_{0}, p_{1}, \ldots p_{\mathrm{n}}$ and calculate SSD which is clearly a function of ω

$$
\begin{equation*}
\operatorname{SSD}=\operatorname{SSD}(\omega) \tag{5}
\end{equation*}
$$

The minimum of this function can be found by a number of methods. The one chosen here is based on halving the interval $\left\langle\omega_{1}, \omega_{2}\right\rangle$ encompassing the minimum.

The set of normal equations (3) is simplified by introducing

$$
[j]=\sum_{i=0}^{R-1} x_{i}^{j} \exp \left(2 \omega x_{\mathrm{i}}\right), \quad[y j]=\sum_{i=0}^{R-1} x_{i}^{j} y_{i} \exp \left(\omega x_{i}\right) .
$$

Thus we get

$$
\begin{array}{ll}
p_{0}[0]+p_{1}[1] & +\ldots+p_{\mathrm{n}}[n]= \\
p_{0}[1]+p_{1}[2] & +\ldots+p_{\mathrm{n}}[n+1]=[y 1], \tag{6}\\
\ldots \ldots
\end{array},
$$

It is well known that the system has an ill-conditioned matrix. Consequently, the original fitting equation is replaced by

$$
\begin{equation*}
u=\left[q_{0} P_{0}(x)+q_{1} P_{1}(x)+\ldots+q_{\mathrm{n}} P_{\mathrm{n}}(x)\right] \exp (\omega x), \tag{7}
\end{equation*}
$$

where $P_{\mathrm{k}}(x)$ is a polynomial of the k-th degree in x. All polynomials are assumed to be known, ω has been chosen and the problem is to determine the coefficients $q_{0}, q_{1}, \ldots q_{\mathrm{n}}$ so as to make

$$
\begin{equation*}
\mathrm{SSD}=\sum_{i=0}^{R-1}\left(u-y_{i}\right)^{2} \tag{8}
\end{equation*}
$$

a minimum. This leads now to the conditions

$$
\begin{equation*}
\frac{\partial \operatorname{SSD}}{\partial q_{0}}=\frac{\partial \operatorname{SSD}}{\partial q_{1}}=\ldots=\frac{\partial \operatorname{SSD}}{\partial q_{\mathrm{n}}}=0 . \tag{9}
\end{equation*}
$$

Introducing for simplicity

$$
\begin{equation*}
D_{\mathbf{k}}(x)=P_{\mathbf{k}}(x) \cdot \exp (\omega x), \tag{10}
\end{equation*}
$$

we get that

$$
\frac{\partial \operatorname{SSD}}{\partial q_{\mathrm{k}}}=\sum_{i=0}^{R-1} 2\left[q_{0} D_{0}\left(x_{\mathrm{i}}\right)+\ldots+q_{\mathrm{n}} D_{\mathrm{n}}\left(x_{\mathrm{i}}\right)-y_{\mathrm{i}}\right] \cdot D_{\mathrm{k}}\left(x_{\mathrm{i}}\right)
$$

$k=0,1, \ldots n$. Introducing again a simplified notation

$$
\begin{align*}
& {\left[D_{\mathrm{j}} D_{\mathrm{k}}\right]=\sum_{i=0}^{R-1} P_{\mathrm{j}}\left(x_{\mathrm{i}}\right) P_{\mathbf{k}}\left(x_{\mathrm{i}}\right) \exp \left(2 \omega x_{\mathrm{i}}\right),} \\
& {\left[y D_{\mathrm{k}}\right]=\sum_{i=0}^{R-1} y_{\mathrm{i}} P_{\mathrm{k}}\left(x_{\mathrm{i}}\right) \exp \left(\omega x_{\mathrm{i}}\right)} \tag{11}
\end{align*}
$$

we obtain from Eq. (9) a set of normal equations in q_{k}

$$
\begin{align*}
& q_{0}\left[D_{0} D_{0}\right]+q_{1}\left[D_{0} D_{1}\right]+\ldots+q_{n}\left[D_{0} D_{n}\right]=\left[y D_{0}\right], \\
& q_{0}\left[D_{0} D_{1}\right]+q_{1}\left[D_{1} D_{1}\right]+\ldots+q_{\mathrm{n}}\left[D_{1} D_{\mathrm{n}}\right]=\left[y D_{1}\right] \tag{12}\\
& \ldots \\
& \left.q_{0}\left[D_{0} D_{\mathrm{n}}\right]+q_{1}\left[D_{1} D_{\mathrm{n}}\right]+\ldots+q_{\mathrm{n}} D_{\mathrm{n}}\right]=\left[y D_{\mathrm{n}}\right] .
\end{align*}
$$

Now we require that the polynomials $D_{\mathrm{k}}, k=0,1, \ldots n$, be orthogonal on the set of points $x_{\mathrm{i}}, i=0,1, \ldots R-1$, i.e. that

$$
\sum_{i=0}^{R-1} D_{r}\left(x_{i}\right) D_{s}\left(x_{\mathrm{i}}\right)\left\{\begin{array}{l}
=0 \text { for } r \neq s \tag{13}\\
\neq 0 \text { for } r=s
\end{array}\right.
$$

$r, s=0,1, \ldots n$.
If it is so the set of normal equations (11) simplifies to

$$
\begin{equation*}
q_{\mathrm{k}}\left[D_{\mathrm{k}} D_{\mathrm{k}}\right]=\left[y D_{\mathrm{k}}\right] \tag{14}
\end{equation*}
$$

$k=0,1, \ldots n$, from which q_{n} can be easily computed.
The requirement of orthogonality can be met e.g. by taking

$$
\begin{equation*}
D_{0}\left(x_{\mathrm{i}}\right)=0, \quad D_{1}\left(x_{\mathrm{i}}\right)=\exp \left(\omega x_{\mathrm{i}}\right) \tag{15}
\end{equation*}
$$

and all other D_{k} being defined by the recurrence formula

$$
\begin{equation*}
D_{\mathbf{k}+1}(x)=\left(x-A_{\mathrm{k}}\right) D_{\mathbf{k}}(x)-B_{\mathbf{k}} D_{\mathbf{k}-1}(x), \tag{16}
\end{equation*}
$$

$k=0,1 \ldots n$, where

$$
\begin{gather*}
A_{\mathbf{k}}=\frac{\sum_{i=0}^{R-1} x_{\mathrm{i}} D_{k}^{2}\left(x_{\mathrm{i}}\right)}{\sum_{i=0}^{R-1} D_{k}^{2}\left(x_{\mathrm{i}}\right)}, k=1,2, \ldots n, \tag{17}\\
B_{\mathrm{k}}=\frac{\sum_{i=0}^{R-1} x_{\mathrm{i}} D_{\mathrm{k}}\left(x_{\mathrm{i}}\right) D_{\mathbf{k}-1}\left(x_{\mathrm{i}}\right)}{\sum_{i=0}^{R-1} D_{k-1}^{2}\left(x_{\mathrm{i}}\right)}=\frac{\sum_{i=0}^{R-1} D_{k}^{2}\left(x_{\mathrm{i}}\right)}{\sum_{i=0}^{R-1} D_{k-1}^{2}\left(x_{\mathrm{i}}\right)}, k=2,3, \ldots n, B_{1}=0 .
\end{gather*}
$$

We shall give a proof of this statement computing simultaneously the coefficients $A_{\mathrm{k}}, B_{\mathrm{k}}$. Let us suppose that Eq. (16) is valid for $k=1,2, \ldots, k$ and thus the functions $D_{0}, D_{1}, \ldots D_{\mathrm{k}}$ are orthogonal in the sense of Eq. (13). Multiplying the recurrence formula (16) by polynomial $D_{j}\left(x_{\mathrm{i}}\right)$ and summing over all i we get

$$
\begin{equation*}
\left[D_{\mathrm{k}+1} D_{\mathrm{j}}\right]=\left[x D_{\mathrm{k}} D_{\mathrm{j}}\right]-A_{\mathrm{k}}\left[D_{\mathrm{k}} D_{\mathrm{j}}\right]-B_{\mathrm{k}}\left[D_{\mathrm{k}-1} D_{\mathrm{j}}\right] \tag{19}
\end{equation*}
$$

(the brackets again indicate summing over i from 0 to $R-1$).
The following cases are distinguished:
$j<k-1$: All sums on the right hand side vanish and, accordingly, the left hand side equals zero.
$j=k-1:$ In accord with the assumption we have on the right hand side $\left[D_{\mathbf{k}} D_{\mathbf{k}-1}\right]=$ $=0$. Taking B_{k} such that

$$
\left[x D_{\mathrm{k}} D_{\mathrm{k}-1}\right]-B_{\mathrm{k}}\left[D_{k-1}^{2}\right]=0,
$$

(compare Eq. (18)), then also the left-hand side of Eq. (19) vanishes.
$j=k$: On the right hand side we have in accord with the assumption $\left[D_{\mathrm{k}-1} D_{\mathrm{k}}\right]=0$. Taking A_{k} such that

$$
\left[x D_{k}^{2}\right]-A_{k}\left[D_{k}^{2}\right]=0,
$$

compare Eq. (17)) the left hand side vanishes.
Thus it has been proven that the polynomial $D_{\mathbf{k}+1}(x)$, formulated as shown, is orthogonal to all preceding polynomials. Since, however, D_{0}, D_{1}, D_{2} are orthogonal, hence all $D_{\mathrm{k}}(x)$ are orthogonal on the given set of points.

The polynomial $D_{0}\left(x_{i}\right)$ was put equal zero for all i. It is therefore meaningless to take q_{0} into consideration in the normal equations (14) as well as in the poly-
nomial (7). The polynomial $D_{\mathrm{k}}(x)$ against the original assumption, is of the order $k-1$ only. Eq. (7) is therefore written anew

$$
\begin{equation*}
u=q_{1} D_{1}(x)+q_{2} D_{2}(x)+\ldots+q_{n+1} D_{\mathrm{n}+1}(x) \tag{20}
\end{equation*}
$$

or

$$
\left.u=q_{1} P_{1}(x)+q_{2} P_{2}(x)+\ldots+q_{n+1} P_{n+1}(x)\right] \exp (\omega x) .
$$

The polynomial in the brackets is put in the form of Eq. (1). For this purpose we write

$$
\begin{equation*}
D_{\mathrm{k}}(x)=D_{\mathrm{k}, 0}+D_{\mathrm{k}, 1} x+\ldots+D_{\mathrm{k}, \mathrm{k}-1} \cdot x^{\mathrm{k}-1} . \tag{21}
\end{equation*}
$$

From the definition Eqs (15) and (16) it follows

$$
\begin{gather*}
D_{1,0}=D_{2,1}=\ldots=D_{\mathrm{n}+1, \mathrm{n}}=1, \tag{22}\\
D_{\mathrm{k}+1,0}=-A_{\mathrm{k}} D_{\mathrm{k}, 0}-B_{\mathrm{k}} D_{\mathrm{k}-1,0} \tag{23}
\end{gather*}
$$

$k=1,2, \ldots n$. Finally

$$
\begin{equation*}
D_{\mathbf{k}+1, \mathbf{k}-1}=-A_{\mathbf{k}} D_{\mathbf{k}, \mathbf{k}-1}+D_{\mathbf{k}, \mathbf{k}-2} \tag{24}
\end{equation*}
$$

$k=2,3, \ldots n$,

$$
\begin{equation*}
D_{\mathbf{k}+1, \mathrm{i}}=-A_{\mathbf{k}} D_{\mathrm{k}, \mathrm{i}}+D_{\mathbf{k}, \mathrm{i}-1}-B_{\mathbf{k}} D_{\mathrm{k}-1, \mathrm{i}} \tag{25}
\end{equation*}
$$

$k=3,4, \ldots n ; i=1,2, \ldots n-2$.
Summing the coefficients of equal powers of x multiplied by the coefficients q_{k}, one obtains for the sought coefficients p_{k} of Eq. (1)

$$
\begin{equation*}
p_{\mathrm{i}}=\sum_{k=1}^{n+1} q_{\mathrm{k}} D_{k, 1} \tag{26}
\end{equation*}
$$

$i=0,1, \ldots n-1$. In the sums one has to note that for $i \geqq k$ all $D_{\mathrm{k}, \mathrm{i}}=0$.

Choice of the Iteration Method

Thus far we have assumed that the coefficient ω in the exponentials $\exp \left(\omega x_{i}\right)$ is known and obtained thus the coefficients $D_{\mathrm{k}}, p_{\mathrm{k}}$ which have been similarly as SSD a function of ω.

The minimum of this function was searched by successive halving the interval $\left\langle\omega_{1}, \omega_{2}\right\rangle$ in which it was encompassed. In practice we put $m=\exp \omega$, took a small but otherwise arbitrary m_{0} and introduced $m_{\mathrm{i}}=m_{0}+i h, i=0,1, \ldots$; where h
denotes a preselected increment. Gradualy we computed the sums of squared deviations $\operatorname{SSD}(0), \operatorname{SSD}(1), \operatorname{SSD}(2) \ldots$ For a sufficiently small $m_{0} \operatorname{SSD}$ at first decreases but ultimately we reach such i when

$$
\operatorname{SSD}(i)>\operatorname{SSD}(i-1) .
$$

This situation is illustrated in Fig. $1 a$. The values $\operatorname{SSD}(i-2), \operatorname{SSD}(i-1)$ and $\operatorname{SSD}(i)$ plotted in the figure are there renumbered by indices $0,2,4$ (see the bottom axis of Fig. 1a) and a new $\operatorname{SSD}(1)$ is computed with the increment halved. Two cases may occur:
a) $\operatorname{SSD}(1) \leqq \operatorname{SSD}(2)$. The indices are again changed replacing 1 and 2 by 2 and 4 (Fig. 1b).
b) $\operatorname{SSD}(1)>\operatorname{SSD}(2)$. In this case we have to compute $\operatorname{SSD}(3)$ (see. Fig. 1c) and change the indices by replacing 2 and 0 by 3 and 2 . In both cases we return to the original configuration from Fig. 1a. with the increment halved. The described halving is repeated until $\operatorname{SSD}(i-2), \operatorname{SSD}(i-1)$ and $\operatorname{SSD}(i)$ differ by less than a prescribed accuracy.

Fitting Equation Subject to Constraints

If the fitted equation is required to satisfy additional constraints, e.g. passing through given points, the derivation procedure is somewhat modified. This will be shown on a particular case when the fitted equation is required to pass through $x=0$, $y=y_{0}$.

In the calculation of the coefficients we start from

$$
\begin{equation*}
u=q_{1} D_{1}(x)+q_{2} D_{2}(x)+\ldots+q_{\mathrm{n}+1} D_{\mathrm{n}+1}(x), \tag{27}
\end{equation*}
$$

Fig. 1
The Iteration Method

Table I

A Comparison of the Fitted (u) and Observed (y) Values

x	y	u for $n=3$	u for $n=4$	u for $n=5$
0	1.00	1.000	1.0000	1.0000
1	1.40	1.364	1.4003	1.4002
2	1.50	1.556	1.4977	1.4979
3	1.46	1.468	1.4674	1.4673
4	1.27	1.224	1.2631	1.2629
5	0.98	0.939	1.9687	1.9687
6	0.66	0.680	1.6789	1.6789
7	0.43	0.471	0.4436	0.4438
8	0.30	0.316	0.2746	0.2748

Table II
Results of p_{k}, ω and SSD

SSD	$n=3$ $1.060 .10^{-2}$	$n=4$ $1 \cdot 418.10^{-3}$	$n=5$ $1 \cdot 417.10^{-3}$
p_{0}	1.00000	1.00000	1.00000
p_{1}	0.87419	2.03997	2.28658
p_{2}	0.72031	-0.25991	-0.70087
p_{3}	-0.07437	0.56031	0.80948
p_{4}	-	0.02224	-0.05284
p_{5}	-	-	-0.00471
ω	-0.642872	-0.869550	-0.870481

containing orthogonal polynomials. The coefficients $q_{1}, q_{2}, \ldots q_{\mathrm{n}+1}$ are not independent now: Stipulating $y=y_{0}$ for $x=0$ we have necessarily

$$
\begin{equation*}
y_{0}=q_{1} D_{1}(0)+q_{2} D_{2}(0)+\ldots+q_{\mathrm{n}+1} D_{\mathrm{n}+1}(0), \tag{28}
\end{equation*}
$$

q_{1} for instance may be regarded to be a function of the remaining n coefficients $q_{2}, \ldots q_{\mathrm{n}+1}$.

The sum of square deviations

$$
\mathrm{SSD}=\sum_{i=0}^{R-1}\left[q_{1} D_{1}\left(x_{\mathrm{i}}\right)+\ldots+q_{\mathrm{n}+1} D_{\mathrm{n}+\mathrm{x}}\left(x_{\mathrm{i}}\right)-y_{\mathrm{i}}\right]^{2}
$$

is now a function of n coefficients $q_{2}, q_{3}, \ldots q_{\mathrm{n}+1}$ and ω. Let us assume again ω to be known. Then

$$
\frac{\partial \mathrm{SSD}}{\partial q_{\mathrm{k}}}=2 \sum_{i=0}^{R-1}\left(q_{1} D_{1}+q_{2} D_{2}+\ldots+q_{\mathrm{n}+1} D_{\mathrm{n} 1}\right) \cdot\left[D_{\mathrm{k}}-\mathrm{D}_{1} D_{\mathrm{k}}(0)\right]
$$

(the argument x_{i} of the polynomials D_{k} is omitted) $k=2,3, \ldots n+1$. Putting the right-hand side equal zero one obtains after some arrangements

$$
\begin{array}{ll}
-q_{1}\left[D_{1} D_{1}\right] D_{2}(0)+q_{2}\left[D_{2} D_{2}\right] & =\left[y D_{2}\right]-\left[y D_{1}\right] D_{2}(0) \\
-q_{1}\left[D_{1} D_{1}\right] D_{3}(0)+q_{3}\left[D_{3} D_{3}\right] & =\left[y D_{3}\right]-\left[y D_{1}\right] D_{3}(0) \tag{29}
\end{array}
$$

$$
-q_{1}\left[D_{1} D_{1}\right] D_{\mathrm{n}+1}(0)+q_{\mathrm{n}+1}\left[D_{\mathrm{n}+1} D_{\mathrm{n}+1}\right]=\left[y D_{\mathrm{n}+1}\right]-\left[y D_{1}\right] D_{\mathrm{n}+1}(0) .
$$

Table III

Functional and Fitted Values of the Maxwell Distribution

\boldsymbol{i}	x	y	u for $n=3$	u for $n=4$	u for $n=5$
0	0	0	0	0	0
0	0.2	0.240188	0.213	0.2410	0.240180
2	0.4	0.670293	0.750	0.6645	0.670405
3	0.6	0.827696	0.770	0.8474	0.826829
4	0.8	0.635244	0.568	0.6089	0.638898
5	1.0	0.337072	0.358	0.3307	0.329689
6	1.2	0.129663	0.202	0.1524	0.132496
7	1.4	0.037086	0.108	0.0631	0.045230

Table IV
Sums of Squared Deviations and Parameters of $u=\left(p_{0}+p_{1} i+\ldots+p_{n} i^{n}\right) \exp (\omega i)$

n	SSD	ω	p_{0}	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}
3	$2.562 .10^{-2}$	-0.956150	0	-1.44353	1.99900	-0.10690	-	-
4	$2.353 .10^{-3}$	-1.397274	0	5.32564	-8.76149	4.41307	0.03285	-
5	$1.430 .10^{-4}$	-1.811065	0	-40.6270	81.0937	-50.7369	11.7375	-0.0074

(as before brackets indicate summation from $i=0$ to $R-1$). From these equations $q_{2}, q_{3}, \ldots q_{\mathrm{n}+1}$ can be simply calculated as functions of q_{1} and substituted in Eq. (28) with the result

$$
\begin{equation*}
q_{\mathrm{k}}=a_{\mathrm{k}}+b_{\mathrm{k}} q_{1} . \tag{30}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{\mathrm{k}}=\left(\left[y D_{\mathrm{k}}\right]-\left[y D_{1}\right] D_{\mathrm{k}}(0)\right) /\left[D_{\mathrm{k}} D_{\mathrm{k}}\right], \\
& b_{\mathrm{k}}=\left[D_{1} D_{1}\right] D_{\mathrm{k}}(0) /\left[D_{\mathrm{k}} D_{\mathrm{k}}\right], \tag{31}\\
& k=2,3, \ldots n+1 .
\end{align*}
$$

Substituting in Eq. (28) there results for $q_{\text {, }}$

$$
\begin{equation*}
y_{0}=q_{1}+q_{1} \sum_{k=2}^{n+1} b_{k} D_{k}(0)+\sum_{k=2}^{n+1} a_{k} D_{k}(\theta) . \tag{32}
\end{equation*}
$$

Substituting in Eqs (30) we find successively coefficients $q_{k}, k=2,3, \ldots n+1$.
Note that in the original fitting equation

$$
u=\left(p_{0}+p_{1} x+\ldots+p_{\mathrm{n}} x^{\mathrm{n}}\right) \exp (\omega x)
$$

the constraint $u=y_{0}$ for $x=0$ necessitates simply $p_{0}=y_{0}$ so that

$$
\begin{equation*}
u=\left(y_{0}+p_{1} x+p_{2} x^{2}+\ldots+p_{\mathrm{n}} x^{\mathrm{n}}\right) \exp (\omega x) . \tag{33}
\end{equation*}
$$

Examples
I) A curve given by points carrying "experimental" error, obtained from an arbitraxily drawn curve on a graph paper by rounding off the ordinate to two most significant digits, was approximated by

$$
u=P_{n}(x) \exp (\omega x),
$$

for $n=3,4,5$. The curve $u=u(x)$ was required to pass through the point $(0,1)$.
Table I summarizes the observed values of y_{i} for equidistant argument $x=0,1, \ldots 8$ and further the values of u_{i} for $n=3,4,5$. Table II gives the coefficients p_{k} of the polynomial, ω, and SSD. It is noted that due to considerable "experimental" error SSD is not diminished any more on changing from $n=4$ to $n=5$.
2) The same equation was fitted to the Maxwell velocity distribution in an ideal gas given by

$$
\begin{equation*}
y=(4 A / \sqrt{ } \pi) x^{2} \exp \left(-A x^{2}\right), \tag{34}
\end{equation*}
$$

where x is molecular velocity, A parameter (taken $A=3$).
In this case the function in Eq. (34) was computed precisely to 6 digits for $x=0$ through $1 \cdot 4$ and the increment equal $0 \cdot 2$. The "experimental" error is thus negligible. Now we require $u=0$ for $x=0$.

Table III indicates the functional values of the Maxwell distribution tabulated as a function of x. In addition we have introduced a running index i. The fitted values for $n=3,4,5$ are in the following columns of the table. Finally, Table IV shows SSD, the coefficients of the polynomials and ω. In case of the precise data SSD decreases with increasing n uniformly by an order of magnitude or more.

[^1]
[^0]: * Part II: This Journal 37, 2485 (1972).

[^1]: Translated by V. Staněk.

