APPROXIMATION BY EXPONENTIALS. III.* THE USE OF THE PRODUCT OF A POLYNOMIAL AND AN EXPONENTIAL FUNCTION

E.Slavíček

Department of Computer Technique, Institute of Chemical Technology, 166 28 Prague 6

Received October 25th, 1972

The author deals with the problem of fitting to experimental data an equation $u = (p_0 + p_1 x + \dots + p_n x^n) \exp(\omega x)$, where $\omega, p_0, p_1, \dots, p_n$ are constants, and further a generalized equation $u = q_0 D_0(x) + q_1 D_1(x) + \dots + q_n D_n(x)$ where $D_i = P_i(x)$. exp (ωx) and $P_i(x)$ is a polynomial of the *i*-th degree. All D_i are orthogonal functions on the set of numbers x. Special cases are discussed in which these equations are subject to the constraint $u = u_0$ for $x = x_0$.

The character of the above equations makes them well suited for fitting the frequency curves (putting $p_0 = 0$ makes u = 0 both for x = 0 and $x = \infty$; ω assumed negative) as well as those curves where $u = L = \text{const. for } x \rightarrow \infty$ (e.g. in chemical reaction studies).

General Formulation

Let us have R > n + 1 pairs of experimental observations x_i , y_i i = 0, 1, ..., R - 1 obtained *e.g.* on a computer or otherwise.

We search for the unknowns $p_0, p_1, ..., p_n, \omega$ of equation

$$u = (p_0 + p_1 x + ... + p_n x^n) \exp(\omega x)$$
(1)

such that the sum of the squares of the deviations (SSD)

SSD =
$$\sum_{i=0}^{R-1} (u - y_i)^2$$
 (2)

be a minimum. The problem leads to n + 2 equations

$$\frac{\partial \text{SSD}}{\partial p_0} = \frac{\partial \text{SSD}}{\partial p_1} = \dots = \frac{\partial \text{SSD}}{\partial p_n} = 0, \qquad (3)$$

$$\frac{\partial \text{SSD}}{\partial \omega} = 0. \tag{4}$$

Part II: This Journal 37, 2485 (1972).

Collection Czechoslov, Chem. Commun. /Vol. 38/ (1973)

3352

While Eqs (3) are linear in p_1, p_2, \ldots, p_n , Eq. (4) is a non-linear one. A plausible approach is to pick ω at random, solve the set of Eqs (3) for p_0, p_1, \ldots, p_n and calculate SSD which is clearly a function of ω

$$SSD = SSD(\omega)$$
. (5)

The minimum of this function can be found by a number of methods. The one chosen here is based on halving the interval $\langle \omega_1, \omega_2 \rangle$ encompassing the minimum.

The set of normal equations (3) is simplified by introducing

$$\begin{bmatrix} j \end{bmatrix} = \sum_{i=0}^{R-1} x_i^j \exp(2\omega x_i), \quad \begin{bmatrix} yj \end{bmatrix} = \sum_{i=0}^{R-1} x_i^j y_i \exp(\omega x_i).$$

Thus we get

$$p_{0}[0] + p_{1}[1] + \dots + p_{n}[n] = [y0],$$

$$p_{0}[1] + p_{1}[2] + \dots + p_{n}[n+1] = [y1],$$

$$\dots$$

$$p_{0}[n] + p_{1}[n+1] + \dots + p_{n}[n+n] = [yn].$$
(6)

It is well known that the system has an ill-conditioned matrix. Consequently, the original fitting equation is replaced by

$$u = [q_0 P_0(x) + q_1 P_1(x) + \dots + q_n P_n(x)] \exp(\omega x), \qquad (7)$$

where $P_k(x)$ is a polynomial of the k-th degree in x. All polynomials are assumed to be known, ω has been chosen and the problem is to determine the coefficients q_0, q_1, \ldots, q_n so as to make

$$SSD = \sum_{i=0}^{R-1} (u - y_i)^2$$
(8)

a minimum. This leads now to the conditions

$$\frac{\partial \text{SSD}}{\partial q_0} = \frac{\partial \text{SSD}}{\partial q_1} = \dots = \frac{\partial \text{SSD}}{\partial q_n} = 0.$$
(9)

Introducing for simplicity

$$D_{\mathbf{k}}(\mathbf{x}) = P_{\mathbf{k}}(\mathbf{x}) \cdot \exp(\omega \mathbf{x}), \qquad (10)$$

Collection Czechoslov, Chem. Commun. /Vol. 38/ (1973)

we get that

$$\frac{\partial \text{SSD}}{\partial q_k} = \sum_{i=0}^{R-1} 2 \left[q_0 D_0(x_i) + \ldots + q_n D_n(x_i) - y_i \right] \cdot D_k(x_i)$$

 $k = 0, 1, \dots n$. Introducing again a simplified notation

$$\begin{bmatrix} D_j D_k \end{bmatrix} = \sum_{i=0}^{R-1} P_j(x_i) P_k(x_i) \exp(2\omega x_i) ,$$

$$\begin{bmatrix} y D_k \end{bmatrix} = \sum_{i=0}^{R-1} y_i P_k(x_i) \exp(\omega x_i) , \qquad (11)$$

we obtain from Eq. (9) a set of normal equations in q_k

$$q_{0}[D_{0}D_{0}] + q_{1}[D_{0}D_{1}] + \dots + q_{n}[D_{0}D_{n}] = [yD_{0}],$$

$$q_{0}[D_{0}D_{1}] + q_{1}[D_{1}D_{1}] + \dots + q_{n}[D_{1}D_{n}] = [yD_{1}],$$

$$\dots \qquad (12)$$

$$q_{0}[D_{0}D_{n}] + q_{1}[D_{1}D_{n}] + \dots + q_{n}[D_{n}D_{n}] = [yD_{n}].$$

Now we require that the polynomials D_k , k = 0, 1, ..., n, be orthogonal on the set of points x_i , i = 0, 1, ..., R - 1, *i.e.* that

$$\sum_{i=0}^{R-1} D_r(x_i) D_s(x_i) \begin{cases} = 0 & \text{for } r \neq s, \\ \neq 0 & \text{for } r = s, \end{cases}$$
(13)

 $r, s = 0, 1, \ldots n.$

If it is so the set of normal equations (11) simplifies to

$$q_{\mathbf{k}}[D_{\mathbf{k}}D_{\mathbf{k}}] = [yD_{\mathbf{k}}] \tag{14}$$

 $k = 0, 1, \dots n$, from which q_n can be easily computed.

The requirement of orthogonality can be met e.g. by taking

$$D_0(x_i) = 0$$
, $D_1(x_i) = \exp(\omega x_i)$ (15)

and all other D_k being defined by the recurrence formula

$$D_{k+1}(x) = (x - A_k) D_k(x) - B_k D_{k-1}(x), \qquad (16)$$

Collection Czechoslov, Chem. Commun. /Vol. 38/ (1973)

k = 0, 1 ... n, where

$$A_{k} = \frac{\sum_{i=0}^{R-1} x_{i} D_{k}^{2}(x_{i})}{\sum_{i=0}^{R-1} D_{k}^{2}(x_{i})}, \quad k = 1, 2, \dots n,$$
(17)

$$B_{k} = \frac{\sum_{i=0}^{R-1} x_{i} D_{k}(x_{i}) D_{k-1}(x_{i})}{\sum_{i=0}^{R-1} D_{k-1}^{2}(x_{i})} = \frac{\sum_{i=0}^{R-1} D_{k}^{2}(x_{i})}{\sum_{i=0}^{R-1} D_{k-1}^{2}(x_{i})}, \quad k = 2, 3, \dots, n, B_{1} = 0.$$
(18)

We shall give a proof of this statement computing simultaneously the coefficients A_k , B_k . Let us suppose that Eq. (16) is valid for k = 1, 2, ..., k and thus the functions $D_0, D_1, ..., D_k$ are orthogonal in the sense of Eq. (13). Multiplying the recurrence formula (16) by polynomial $D_i(x_i)$ and summing over all *i* we get

$$\begin{bmatrix} D_{k+1}D_j \end{bmatrix} = \begin{bmatrix} xD_kD_j \end{bmatrix} - A_k \begin{bmatrix} D_kD_j \end{bmatrix} - B_k \begin{bmatrix} D_{k-1}D_j \end{bmatrix}$$
(19)

(the brackets again indicate summing over *i* from 0 to R - 1).

The following cases are distinguished:

j < k - 1: All sums on the right hand side vanish and, accordingly, the left hand side equals zero.

j = k - 1: In accord with the assumption we have on the right hand side $[D_k D_{k-1}] = 0$. Taking B_k such that

$$[xD_kD_{k-1}] - B_k[D_{k-1}^2] = 0$$
,

(compare Eq. (18)), then also the left-hand side of Eq. (19) vanishes.

j = k: On the right hand side we have in accord with the assumption $[D_{k-1}D_k] = 0$. Taking A_k such that

$$\left[xD_k^2\right] - A_k\left[D_k^2\right] = 0,$$

compare Eq. (17)) the left hand side vanishes.

Thus it has been proven that the polynomial $D_{k+1}(x)$, formulated as shown, is orthogonal to all preceding polynomials. Since, however, D_0 , D_1 , D_2 are orthogonal, hence all $D_k(x)$ are orthogonal on the given set of points.

The polynomial $D_0(x_i)$ was put equal zero for all *i*. It is therefore meaningless to take q_0 into consideration in the normal equations (14) as well as in the poly-

nomial (7). The polynomial $D_k(x)$ against the original assumption, is of the order k - 1 only. Eq. (7) is therefore written anew

$$u = q_1 D_1(x) + q_2 D_2(x) + \dots + q_{n+1} D_{n+1}(x)$$
(20)

or

$$u = q_1 P_1(x) + q_2 P_2(x) + \ldots + q_{n+1} P_{n+1}(x)] \exp(\omega x).$$

The polynomial in the brackets is put in the form of Eq. (1). For this purpose we write

$$D_{k}(x) = D_{k,0} + D_{k,1}x + \dots + D_{k,k-1} \cdot x^{k-1} .$$
⁽²¹⁾

From the definition Eqs (15) and (16) it follows

$$D_{1,0} = D_{2,1} = \dots = D_{n+1,n} = 1$$
, (22)

$$D_{k+1,0} = -A_k D_{k,0} - B_k D_{k-1,0}$$
⁽²³⁾

k = 1, 2, ... n. Finally

$$D_{k+1,k-1} = -A_k D_{k,k-1} + D_{k,k-2}$$
(24)

 $k = 2, 3, \dots n,$

$$D_{k+1,i} = -A_k D_{k,i} + D_{k,i-1} - B_k D_{k-1,i}$$
⁽²⁵⁾

$$k = 3, 4, \dots n; i = 1, 2, \dots n - 2.$$

Summing the coefficients of equal powers of x multiplied by the coefficients q_k , one obtains for the sought coefficients p_k of Eq. (1)

$$p_{i} = \sum_{k=1}^{n+1} q_{k} D_{k,1}$$
(26)

 $i = 0, 1, \dots, n - 1$. In the sums one has to note that for $i \ge k$ all $D_{k,i} = 0$.

Choice of the Iteration Method

Thus far we have assumed that the coefficient ω in the exponentials exp (ωx_i) is known and obtained thus the coefficients D_k , p_k which have been similarly as SSD a function of ω .

The minimum of this function was searched by successive halving the interval $\langle \omega_i, \omega_2 \rangle$ in which it was encompassed. In practice we put $m = \exp \omega$, took a small but otherwise arbitrary m_0 and introduced $m_i = m_0 + ih$, i = 0, 1, ...; where h

denotes a preselected increment. Gradualy we computed the sums of squared deviations SSD(0), SSD(1), SSD(2)... For a sufficiently small m_0 SSD at first decreases but ultimately we reach such *i* when

$$SSD(i) > SSD(i-1)$$
.

This situation is illustrated in Fig. 1*a*. The values SSD(i - 2), SSD(i - 1) and SSD(i) plotted in the figure are there renumbered by indices 0, 2, 4 (see the bottom axis of Fig. 1*a*) and a new SSD(1) is computed with the increment halved. Two cases may occur:

a) SSD(1) \leq SSD(2). The indices are again changed replacing 1 and 2 by 2 and 4 (Fig. 1b).

b) SSD(1) > SSD(2). In this case we have to compute SSD(3) (see Fig. 1c) and change the indices by replacing 2 and 0 by 3 and 2. In both cases we return to the original configuration from Fig. 1a. with the increment halved. The described halving is repeated until SSD(i - 2), SSD(i - 1) and SSD(i) differ by less than a prescribed accuracy.

Fitting Equation Subject to Constraints

If the fitted equation is required to satisfy additional constraints, *e.g.* passing through given points, the derivation procedure is somewhat modified. This will be shown on a particular case when the fitted equation is required to pass through x = 0, $y = y_0$.

In the calculation of the coefficients we start from

$$u = q_1 D_1(x) + q_2 D_2(x) + \dots + q_{n+1} D_{n+1}(x), \qquad (27)$$

Collection Czechoslov. Chem. Commun. /Vol. 38/ (1973)

Slavíček :

3358 TABLE I

А	Comparison of the Fitted (u) and Observed (v) Val	ues

	x	У	u for $n = 3$	u for $n = 4$	u for $n = 5$
-	0	1.00	1.000	1.0000	1.0000
	1	1.40	1.364	1.4003	1.4002
	2	1.50	1.556	1.4977	1.4979
	3	1.46	1.468	1.4674	1-4673
	4	1.27	1.224	1.2631	1-2629
	5	0.98	0.939	1.9687	1.9687
	6	0.66	0.680	1.6789	1.6789
	7	0.43	0.471	0.4436	0.4438
	8	0.30	0.316	0.2746	0.2748

TABLE II

Results of p_k , ω and SSD

	SSD	n = 3 1.060.10 ⁻²	n = 4 1.418.10 ⁻³	n = 5 1.417.10 ⁻³	
	Po	1.000 00	1.000 00	1.000 00	
	P1	0.874 19	2.039 97	2.286 58	
•	p_2	0.720 31	-0.259 91	-0·700 87	
	P3	-0·074 37	0.560 31	0.809 48	
	P4		0.022 24	-0.052 84	
	P 5	_		0·004 71	
	ω	-0.642 872	-0.869550	-0·870 481	

containing orthogonal polynomials. The coefficients $q_1, q_2, \ldots q_{n+1}$ are not independent now: Stipulating $y = y_0$ for x = 0 we have necessarily

$$y_0 = q_1 D_1(0) + q_2 D_2(0) + \dots + q_{n+1} D_{n+1}(0), \qquad (28)$$

 q_1 for instance may be regarded to be a function of the remaining *n* coefficients q_2, \ldots, q_{n+1} .

The sum of square deviations

SSD =
$$\sum_{i=0}^{R-1} [q_1 D_1(x_i) + ... + q_{n+1} D_{n+1}(x_i) - y_i]^2$$

Collection Czechoslov. Chem. Commun. /Vol. 38/ (1973)

is now a function of *n* coefficients $q_2, q_3, \ldots q_{n+1}$ and ω . Let us assume again ω to be known. Then

$$\frac{\partial \text{SSD}}{\partial q_{k}} = 2 \sum_{i=0}^{R-1} \left(q_{1}D_{1} + q_{2}D_{2} + \dots + q_{n+1}D_{n1} \right) \left[D_{k} - D_{1}D_{k}(0) \right]$$

(the argument x_i of the polynomials D_k is omitted) k = 2, 3, ..., n + 1. Putting the right-hand side equal zero one obtains after some arrangements

TABLE III							
Functional and	Fitted	Values	of	the	Maxwell	Distributi	on

i	x	У	u for $n = 3$	u for $n = 4$	u for $n = 5$
0	0	0	0	0	0
0	0.2	0.240 188	0.213	0.2410	0.240 180
2	0.4	0.670 293	0.750	0.6645	0.670 405
3	0.6	0.827 696	0.770	0.8474	0.826 829
4	0.8	0.635 244	0.568	0.6089	0.638 898
5	1.0	0.337 072	0.358	0.3307	0.329 689
6	1.2	0.129 663	0.202	0.1524	0.132 496
7	1.4	0.037 086	0.108	0.0631	0.045 230

TABLE IV

Sums of Squared Deviations and Parameters of $u = (p_0 + p_1 i + ... + p_n i^n) \exp(\omega i)$

n	SSD	ω	<i>p</i> ₀	<i>p</i> ₁	<i>p</i> ₂	<i>P</i> ₃	<i>P</i> 4	<i>p</i> ₅
3 4 5	$2.562.10^{-2}$ $2.353.10^{-3}$ $1.430.10^{-4}$	0-956150 1-397274 1-811065	0 0 0	$- \frac{1 \cdot 44353}{5 \cdot 32564} \\ - 40 \cdot 6270$	1·99900 8·76149 81·0937	- 0·10690 4·41307 - 50·7369	0·03285 11·7375	

Collection Czechoslov. Chem. Commun. /Vol. 38/ (1973)

(as before brackets indicate summation from i = 0 to R - 1). From these equations $q_2, q_3, \ldots, q_{n+1}$ can be simply calculated as functions of q_1 and substituted in Eq. (28) with the result

$$q_{\mathbf{k}} = a_{\mathbf{k}} + b_{\mathbf{k}} q_1 \,. \tag{30}$$

where

$$a_{k} = ([yD_{k}] - [yD_{1}] D_{k}(0))/[D_{k}D_{k}],$$

$$b_{k} = [D_{1}D_{1}] D_{k}(0)/[D_{k}D_{k}],$$

$$k = 2, 3, \dots n + 1.$$
(31)

Substituting in Eq. (28) there results for q_1

$$y_0 = q_1 + q_1 \sum_{k=2}^{n+1} b_k D_k(0) + \sum_{k=2}^{n+1} a_k D_k(0) .$$
(32)

Substituting in Eqs (30) we find successively coefficients q_k , k = 2, 3, ..., n + 1.

Note that in the original fitting equation

$$u = (p_0 + p_1 x + \dots + p_n x^n) \exp(\omega x)$$

the constraint $u = y_0$ for x = 0 necessitates simply $p_0 = y_0$ so that

$$u = (y_0 + p_1 x + p_2 x^2 + \dots + p_n x^n) \exp(\omega x).$$
(33)

Examples

 A curve given by points carrying "experimental" error, obtained from an arbitrarily drawn curve on a graph paper by rounding off the ordinate to two most significant digits, was approximated by

$$u = P_n(x) \exp(\omega x),$$

for n = 3, 4, 5. The curve u = u(x) was required to pass through the point (0,1).

Table I summarizes the observed values of y_i for equidistant argument x = 0, 1, ... 8 and further the values of u_i for n = 3, 4, 5. Table II gives the coefficients ρ_k of the polynomial, ω_i and SSD. It is noted that due to considerable "experimental" error SSD is not diminished any more on changing from n = 4 to n = 5.

2) The same equation was fitted to the Maxwell velocity distribution in an ideal gas given by

$$y = (4A/\sqrt{\pi}) x^2 \exp(-Ax^2)$$
, (34)

where x is molecular velocity, A parameter (taken A = 3).

In this case the function in Eq. (34) was computed precisely to 6 digits for x = 0 through 1.4 and the increment equal 0.2. The "experimental" error is thus negligible. Now we require u = 0for x = 0.

Approximation by	Exponentials.	III.
------------------	---------------	------

3361

Table III indicates the functional values of the Maxwell distribution tabulated as a function of x. In addition we have introduced a running index i. The fitted values for n = 3, 4, 5 are in the following columns of the table. Finally, Table IV shows SSD, the coefficients of the polynomials and ω . In case of the precise data SSD decreases with increasing n uniformly by an order of magnitude or more.

Translated by V. Staněk.